ExpIPi.gif(360 × 323 кропак, аб’ём файла: 11 KB, тып MIME: image/gif, закальцаваныя, 9 кадраў, 4,5 s)
Гэты файл з Wikimedia Commons і можа выкарыстоўвацца іншымі праектамі. Апісанне на яго старонцы размоў прыведзена ніжэй
Тлумачэнне
АпісаннеExpIPi.gif
This is a demonstration that Exp(i*Pi)=-1 (called Euler's formula, or Euler's identity). It uses the formula (1+z/N)^N --> Exp(z) (as N increases). The Nth power is displayed as a repeated multiplication in the complex plane. As N increases, you can see that the final result (the last point) approaches -1, the actual value of Exp(i*pi).
Дата
Крыніца
Уласная праца
Гэты файл (GIFграфіка) быў створаны з дапамогай Mathematica карыстальнікам n.
Я, уладальнік аўтарскіх правоў на гэты твор, перадаю яго ў грамадскі набытак. Дазвол сапраўдны для ўсяго свету. У некаторых краінах гэта не можа быць юрыдычна магчыма; калі так, то: Я дазваляю кожнаму выкарыстоўваць гэтую працу ў любых мэтах, без аніякіх умоў, калі толькі такія ўмовы не патрабуюцца паводле закону.
(* Source code written in Mathematica 6.0, by Steve Byrnes, 2008. I release this code into the public domain. *)
plot1 = Table[
ListPlot[Table[{Re[(1 + (\[ImaginaryI] \[Pi])/n)^m],
Im[(1 + (\[ImaginaryI] \[Pi])/n)^m]}, {m, 0, n}],
PlotJoined -> True, PlotMarkers -> Automatic,
PlotRange -> {{-2.5, 1.1}, {0, \[Pi] + .05}}, AxesOrigin -> {0, 0},
AxesLabel -> {"Real part", "Imaginary part"},
PlotLabel -> "N = " <> ToString[n],
AspectRatio -> Automatic], {n, {1, 2, 3, 4, 5, 10, 20, 50, 100}}];
Export["ExpIPi.gif", plot1, "DisplayDurations" -> {2},
"AnimationRepititions" -> Infinity ]