Размах (статыстыка)
У арыфметыцы размах[1] набору, рада або выбаркі даных вызначаецца як розніца паміж найбольшым і найменшым значэннем,[2] або як найбольшая розніца паміж максімумам і мінімумам выбаркі.[3] Ён выражаецца ў тых жа адзінках вымярэння, што і ў арыгінальных даных.
Тым жа часам у апісальнай статыстыцы, канцэпцыя размаху мае больш складанае значэнне. Так, размахам можна назваць найменшы інтэрвал, які ўключае ўсе даныя выбаркі і адзначае статыстычную дысперсію. З-за таго, што размах залежыць толькі ад двух крайніх значэнняў (назіранняў), ён найбольш выкарыстоўваецца для апісання дысперсіі невялікіх набораў даных.
Непарыўныя незалежныя ідэнтычна размеркаваныя (НІР) выпадковыя велічыні
Для непарыўных незалежных і ідэнтычна размеркаваных выпадковых велічынь з функцыяй размеркавання і функцыяй шчыльнасці імавернасці . У гэтым выпадку выпадковая велічыня абазначае іх размах, і вызначаецца як рознасць паміж найвялікшым і найменшым значэннем сярод , такім чынам .
Размеркаванне
Размах мае інтэгральную функцыю размеркавання[4][5]
.
(пры ; калі , то ).
Гумбель адзначаў, што «прыгажосць гэтай формулы цалкам псуецца тым фактам, што агулам мы не можам выразіць з дапамогай і што лікавае інтэграванне задоўгае і ўтомнае».[4]
Калі размеркаванне кожнай абмежаваны справа (або злева), тады асімптатычнае размеркаванне размаху роўна асімптатычнаму размеркаванню найвялікшай (найменшай) велічыні. Для больш агульных размеркаванняў асімптатычнае размеркаванне можа быць выражана як функцыя Беселя.[4]
Моманты
Сярэдні размах задаецца формулай[6]
- .
дзе — адваротная функцыя. У выпадку, калі кожная мае стандартнае нармальнае размеркаванне, сярэдні размах прадстаўляецца як[7]
- .
Непарыўныя незалежныя неідэнтычна размеркаваныя (ННР) выпадковыя велічыні
Для непарыўных незалежных неідэнтычна размеркаваных выпадковых велічынь з функцыямі размеркавання і функцыямі шчыльнасці імавернасці , размах мае функцыю размеркавання[5]
- .
Дыскрэтныя НІР выпадковыя велічыні
Для дыскрэтных непарыўных незалежных ідэнтычна размеркаваных выпадковых велічынь з функцыяй размеркавання і функцыяй шчыльнасці імавернасці размах — гэта размах выбаркі памерам з папуляцыі з функцыяй размеркавання . Мы можам лічыць без страты агульнасці, што носьбіт кожнай — гэта , дзе — дадатны цэлы лік або бясконцасць.[8][9]
Размеркаванне
Размах мае функцыю размеркавання мас[8][10][11]
Прыклад
Калі мы лічым, што — дыскрэтнае раўнамернае размеркаванне для ўсіх , тады мы знойдзем, што[10][12]
Звязаныя велічыні
Размах — гэта спецыфічны прыклад парадкавай статыстыкі. У прыватнасці, размах — гэта лінейная функцыя парадкавай статыстыкі, якая ўносіць яго ў поле L-ацэньвання.