Тэорыя ваганняў

З пляцоўкі testwiki
Перайсці да навігацыі Перайсці да пошуку

Тэорыя ваганняўтэорыя, якая разглядае разнастайныя ваганні, абстрагуючыся ад іх фізічнай прыроды. Для гэтага выкарыстоўваецца апарат дыферэнцыяльнага злічэння.

Гарманічныя ваганні

Шаблон:Main Гарманічныя ваганні — гэта такія ваганні, пры якіх вагальная велічыня (напрыклад, адхіленні ківача) змяняецца з часам па законе сінуса ці косінуса:

x(t)=Acos(ωt+φ)

Гарманічныя ваганні са згасаннем

Гарманічныя ваганні са згасаннем — гэта такія ваганні, пры якіх вагальная велічыня (напрыклад, адхіленні ківача) змяняецца з часам, як множыва сінуса (косінуса) на змяншальную экспаненту.

x(t)=Aektcos(ωt+φ)

Параметрычныя ваганні

Параметрычныя ваганні адбываюцца калі адзін з параметраў сістэмы (каэфіцыент дыферэнцыяльнага ўраўнення ваганняў) змяняецца перыядычна. Прыклад — арэлі (ківач) са змяняльнай даўжынёй.

Негарманічныя ваганні

Як усталяваў у 1822 годзе Фур’е, кожнае перыядычнае ваганне можа быць уяўлена як сума гарманічных ваганняў шляхам раскладання адпаведнай функцыі ў шэраг Фур'е. Сярод складнікаў гэтай сумы існуе гарманічнае ваганне з найменшай частасцю, якая завецца асноўнай частасцю, а сама гэта ваганне — першым гармонікам ці асноўным тонам, частасці ж усіх астатніх складнікаў, гарманічных ваганняў, кратныя асноўнай частасці, і гэтыя ваганні завуцца найвысокімі гармонікамі ці абертонамі — першым, другім і г.д.[1]

Гл. таксама

Шаблон:Зноскі Шаблон:Бібліяінфармацыя