Атамны гадзіннік

З пляцоўкі testwiki
Перайсці да навігацыі Перайсці да пошуку
Атамны гадзіннік

Атамны гадзіннік (малекулярны, квантавы гадзіннік) — прыбор для вымярэння часу, у якім у якасці перыядычнага працэсу выкарыстоўваюцца ўласныя ваганні, звязаныя з працэсамі, якія адбываюцца на ўзроўні атамаў ці малекул.

Атамныя гадзіннікі важныя ў навігацыі. Вызначэнне становішча касмічных караблёў, спадарожнікаў, балістычных ракет, самалётаў, падводных лодак, а таксама перамяшчэнне аўтамабіляў у аўтаматычным рэжыме па спадарожнікавай сувязі (GPS, ГЛАНАСС, Galileo) нельга ўявіць без атамных гадзіннікаў. Атамныя гадзіннікі выкарыстоўваюцца таксама ў сістэмах спадарожнікавай і наземнай тэлекамунікацыі, у тым ліку ў базавых станцыях мабільнай сувязі, міжнароднымі і нацыянальнымі бюро стандартаў і службамі дакладнага часу, якія перыядычна передаюць сігналы часу па радыё.

З 1967 года міжнародная сістэма адзінак СІ вызначае адну секунду як Шаблон:Num электрамагнітнага выпраменьвання, якое ўзнікае пры пераходзе паміж двума звыштонкімі ўзроўнямі асноўнага стану атама цэзію-133. Згодна з гэтым азначэннем, Шаблон:Nobr з'яўляецца стандартам для вымярэнняў часу і частаты. Дакладнасць вызначэння секунды вызначае дакладнасць вызначэння іншых асноўных адзінак, такіх як, напрыклад, вольт або метр, якія маюць секунду ў сваім азначэнні.

Стабільнасць атамных гадзіннікаў Δν/ν (дзе Δν — адхіленне частаты ν гадзінніка за некаторы перыяд часу) звычайна ляжыць у граніцах 10−14 — 10−15 , а ў спецыяльных канструкцыях дасягае 10−17 [1], і з'яўляецца найлепшай сярод усіх існуючых тыпаў гадзіннікаў [1].

Устройства гадзінніка

Атамны гадзіннік складаецца з некалькіх частак:

Кварцавы генератар уяўляе сабой аўтагенератар, у якасці рэзананснага элемента якога выкарыстоўваюцца п'езаэлектрычныя моды кварцавага крышталя. Згенераваныя ім электрамагнітныя ваганні маюць фіксаваную частату, роўную, як правіла[2]}}, 10 МГц, 5 МГц або 2,5 МГц, з магчымасцю перастройкі ў невялікіх граніцах (± 10−6, напрыклад, змяненнем тэмпературы крышталя). Звычайна даўгачасная стабільнасць кварцавага рэзанатара малая і складае каля Δν/ν=107. З мэтай павышэння яго стабільнасці выкарыстоўваюць ваганні атамаў або малекул, для чаго ваганні кварцавага генератара з частатой νo пастаянна параўноўваюцца c дапамогай частотна-фазавага кампаратара з частатой атамнай лініі νa, якая рэгіструецца ў квантавым дыскрымінатары. Пры з'яўленні розніцы ў фазе і частаце ваганняў, схема зваротнай сувязі падстройвае частату кварцавага генератара да патрэбнага значэння, павышаючы тым самым стабільнасць і дакладнасць гадзінніка да ўзроўню Δν/ν=1014.

У СССР ідэолагам стварэння атамных гадзіннікаў быў акадэмік Мікалай Генадзевіч Басаў[3].

Нацыянальныя цэнтры стандартаў частаты

Рост дакладнасці атамных гадзіннікаў за 50 гадоў. NIST, ЗША

Многія краіны стварылі нацыянальныя цэнтры стандартаў часу і частаты[4]:

Навукоўцы розных краін працуюць над удасканаленнем атамных гадзіннікаў і заснаваных на іх дзяржаўных першасных эталонаў часу і частаты, дакладнасць такіх гадзіннікаў няўхільна павышаецца. У Расіі шырокія даследаванні, накіраваныя на паляпшэнне характарыстык атамных гадзін, праводзяцца ў Шаблон:Нп4.

Тыпы атамных гадзіннікаў

Не кожны атам (малекула) падыходзіць у якасці асновы для атамнага гадзінніка. Выбіраюць атамы, неадчувальныя да розных знешніх уздзеянняў: магнітных, электрычных і электрамагнітных палёў. Для кожнага дыяпазону электрамагнітнага спектра выпраменьвання такія атамы існуюць. Гэта: атамы кальцыю, рубідыю, цэзію, стронцыю, малекулы вадароду, ёду, метану, аксід осмію (VIII) і г. д. У якасці асноўнага (першаснага) стандарту частаты абраны звыштонкі пераход у стабільным атаме цэзію. Характарыстыкі ўсіх астатніх (другасных) стандартаў параўноўваюцца з гэтым стандартам. Каб ажыццявіць такое параўнанне, у цяперашні час выкарыстоўваюцца так званыя Шаблон:Нп4 — выпраменьванне з шырокім частотным спектрам ў выглядзе эквідыстантных ліній, адлегласць паміж якімі прывязваецца да атамным стандарту частаты. Аптычныя грэбні атрымліваюць з дапамогай фемтасекунднага лазера з сінхранізацыяй мод і мікраструктураванага оптавалакна, у якім адбываецца пашырэнне спектра да адной актавы.

У 2006 годзе даследчыкі з амерыканскага Нацыянальнага інстытута стандартаў і тэхналогій пад кіраўніцтвам Джыма Бергквіста (Шаблон:Lang-en) распрацавалі гадзіннік, які працуе на адным атаме ртуці[5]. Пры пераходах паміж энергетычнымі ўзроўнямі іона ртуці генеруюцца фатоны бачнага дыяпазону са стабільнасцю ў 5 разоў вышэйшаю, чым у мікрахвалевага выпраменьвання цэзію-133. Новы гадзіннік могуць таксама знайсці прымяненне ў даследаваннях залежнасці змены фундаментальных фізічных пастаянных ад часу.

Вядуцца актыўныя распрацоўкі кампактных атамных гадзіннікаў для выкарыстання ў паўсядзённым жыцці (наручныя гадзіннікі, мабільныя прылады)[6][7][8]. У пачатку 2011 амерыканская кампанія Symmetricom абвясціла аб камерцыйным выпуску цэзіевых атамных гадзіннікаў памерам з невялікую мікрасхему. Гадзіннік працуе на аснове эфекту кагерэнтнага паланення населенасці. Іх стабільнасць — Шаблон:Nobr за гадзіну, маса — 35 г, спажываная магутнасць — 115мВт[9].

Зноскі

Шаблон:Reflist

Спасылкі

Шаблон:Commons

Шаблон:Гадзіннікі Шаблон:Час Шаблон:Бібліяінфармацыя

  1. 1,0 1,1 Шаблон:Cite web
  2. Прыведзеныя частоты характэрныя іменна для прэцызійных кварцавых рэзанатараў, з самай высокай дабротнасцю і стабільнасцю частаты, дасягальнай пры выкарыстанні п'езаэфекту. Наогул жа, кварцавыя генератары выкарыстоўваюцца на частотах ад адзінак кГц да некалькіх соцень МГц. (Шаблон:Кніга)
  3. Шаблон:Артыкул
  4. National metrology laboratories Шаблон:Ref-en. NIST, 3 лютага 2011 г. Шаблон:Праверана
  5. Шаблон:Артыкул
  6. Шаблон:Cite web
  7. Шаблон:Артыкул
  8. Шаблон:Cite web
  9. — SA.45s — Chip Scale Atomic Clock — Symmetricom