Карпускулярна-хвалевы дуалізм

З пляцоўкі testwiki
Перайсці да навігацыі Перайсці да пошуку

Шаблон:Фізічная тэорыя Карпускуля́рна-хва́левы дуалі́зм — уласцівасць мікрааб'ектаў (напрыклад, электронаў, нейтронаў, фатонаў), паводле якой іх свабодны рух адбываецца на законах распаўсюджвання хваль, а ўзаемадзеянне — па законах сутыкнення часціц (карпускул).

Гіпотэзу аб універсальнасці дуалізму прапанаваў у 1923 годзе Луі дэ Бройль. Пазней, на аснове ідэй дэ Бройля, Эрвін Шродзінгер увёў паняцце хвалевай функцыі і пабудаваў хвалевую механіку, у аснове якой ляжыць ураўненне Шродзінгера, атрыманае ў выніку абагульнення вопытных дадзеных.

У сучаснай тэарэтычнай фізіцы прынцып дуальнасці лічыцца састарэлым, бо (як і мадэль атама Бора) апісвае квантава-механічныя аб'екты цераз паняцці класічнай фізікі: часціцы і хвалі.

Цяпер ў квантавай фізіцы распрацаваны ўласны фармалізм, які дазваляе апісваць адначасовую наяўнасць карпускулярных і хвалевых уласцівасцей без выкарыстання класічных паняццяў.

Аднак, для навукова-папулярных і навучальных мэт прынцып карысны і цяпер, бо дазваляе наглядна і даступна растлумачыць, як паводзяць сябе мікрааб'екты.

Як класічны прыклад, святло можна трактаваць як паток карпускул (фатонаў), якія ў многіх фізічных эфектах праяўляюць ўласцівасці электрамагнітных хваляў. Святло дэманструе ўласцівасці хвалі ў з'явах дыфракцыі і інтэрферэнцыі пры маштабах, параўнальных з даўжынёй светлавой хвалі. Напрыклад, нават адзінкавыя фатоны, якія праходзяць праз двайную шчыліну, ствараюць на экране інтэрферэнцыйную карціну, якая вызначана ўраўненнямі Максвела. Характар вырашанай задачы дыктуе выбар ўжыванага падыходу: карпускулярнага (фотаэфект, эфект Комптана), хвалевага ці тэрмадынамічнага.

Гісторыя

Дуалізм выяўлены для святла ў канцы 19 — пач. 20 ст.: доследы па інтэрферэнцыі, дыфракцыі і палярызацыі святла сведчылі пра яго хвалевую прыроду. Вывучэнне асаблівасцей узаемадзеяння святла з рэчывам (фотаэфект, эфект Комптана і інш.) паказала, што святло праяўляе ўласцівасці патоку часціц з пэўнымі значэннямі энергіі і імпульсу.

Французскі вучоны Луі дэ Бройль (1892—1987) выказаў у 1923 годзе гіпотэзу пра універсальнасць карпускулярна-хвалевага дуалізму. Ён сцвярджаў, што не толькі фатоны, але і электроны і кожныя іншыя часціцы маюць як карпускулярныя, так і хвалевыя ўласцівасці.

Доказы існавання хвалевых уласцівасцей электронаў (гл. хвалі дэ Бройля) атрыманы ў 1927 годзе амерыканскімі вучонымі К. Дэвісанам і Шаблон:Нп4 пры назіранні інтэрферэнцыйнай карціны адбіцця электронаў ад монакрышталяў нікелю.

Выяўленыя інтэрферэнцыйныя эфекты пратонаў, нейтронаў, атамных пучкоў гелію, малекул вадароду і інш.

Карпускулярна-хвалевая дваістасць святла

Такія з'явы, як інтэрферэнцыя і дыфракцыя святла, пераканаўча сведчаць пра хвалевую прыроду святла. Тым жа часам заканамернасці раўназначнага цеплавога выпраменьвання, фотаэфекту і эфекту Комптана можна паспяхова вытлумачыць з класічнага пункту гледжання толькі на аснове ўяўленняў пра святло, як пра паток дыскрэтных фатонаў. Аднак хвалевыя і карпускулярныя спосабы апісання святла не супярэчаць, а ўзаемна дапаўняюць адзін другога, бо святло адначасова мае і хвалевыя, і карпускулярныя ўласцівасці.

Хвалевыя ўласцівасці святла гуляюць вызначальную ролю ў заканамернасцях яго інтэрферэнцыі, дыфракцыі, палярызацыі, а карпускулярныя — у працэсах ўзаемадзеяння святла з рэчывам. Чым больш даўжыня хвалі святла, тым менш імпульс і энергія фатона і тым цяжэй выявіць карпускулярныя ўласцівасці святла. Напрыклад, знешні фотаэфект адбываецца толькі пры энергіях фатонаў, вялікіх ці роўных працы выхаду электрона з рэчыва. Чым менш даўжыня хвалі электрамагнітнага выпраменьвання, тым больш энергія і імпульс фатонаў і тым цяжэй выявіць хвалевыя ўласцівасці гэтага выпраменьвання. Напрыклад, рэнтгенаўскае выпраменьванне дыфрагіруе толькі на вельмі «тонкай» дыфракцыйнай рашотцы — крышталічнай рашотцы цвёрдага цела.[1]

Хвалі дэ Бройля

Фізіка атамаў, малекул і іх калектываў, у прыватнасці крышталяў, а таксама атамных ядраў і элементарных часціц вывучаецца ў квантавай механіцы. Квантавыя эфекты з'яўляюцца значнымі, калі характэрнае значэнне дзеяння (здабытак характэрнай энергіі на характэрны час або характэрны імпульс робіцца параўнальным з (пастаянная Планка). Калі часціцы рухаюцца са скарасцямі шмат менш за скорасць святла ў вакууме c, то прымяняецца нерэлятывісцкая квантавая механіка; пры скарасцях блізкіх да скорасці святла — рэлятывісцкая квантавая механіка.

У аснове квантавай механікі ляжаць ўяўленні Планка пра дыскрэтны характар змены энергіі атамаў, Эйнштэйна пра фатоны, дадзеныя пра квантаванасці некаторых фізічных велічынь (напрыклад, імпульсу і энергіі), якія характарызуюць ў пэўных умовах станыу часціц мікрасвету.

Дэ Бройль высунуў ідэю пра тое, што хвалевы характар распаўсюджвання, выяўлены для фатонаў, мае ўніверсальны характар. Ён павінен выяўляцца для любых часціц, якія маюць імпульс p. Усе часціцы, якія маюць канечны імпульс p, маюць хвалевыя ўласцівасці, у прыватнасці, схільныя да інтэрферэнцыі і дыфракцыі.

Формула дэ Бройля вызначае залежнасць даўжыні хвалі λ, звязанай з часціцай рэчыва, якая рухаецца, ад імпульсу p часціцы:

λ=hp=hmv,

дзе m — маса часціцы, v — яе скорасць, h — пастаянная Планка. Хвалі, пра якіх ідзе гаворка, называюць хвалямі дэ Бройля.

Іншы выгляд формулы дэ Бройля:

𝐩=h2π𝐤=𝐤,

дзе 𝐤=2πλ𝐧 — хвалевы вектар, модуль якога k=2πλ — хвалевы лік — значыць лік даўжынь хваль, якія ўкладваюцца на 2π адзінках даўжыні, 𝐧 — адзінкавы вектар у кірунку распаўсюджвання хвалі, =h2π=1,051034 Дж · с.

Даўжыня хвалі дэ Бройля для нерэлятывісцкай часціцы з масай m, якая мае кінэтычную энергію Wk

λ=h2mWk.

У прыватнасці, для электрона, што паскараецца ў электрычным полі з рознасцю патэнцыялаў Δφ вольт

λ=12,25ΔφA.

Формула дэ Бройля эксперыментальна пацвярджаецца вопытамі па рассейванні электронаў і іншых часціц на крышталях і па праходжанні часціц скрозь рэчывы. Прыкметай хвалевага працэсу ва ўсіх такіх вопытах з'яўляецца дыфракцыйная карціна размеркавання электронаў (або іншых часціц) у прыёмніках часціц.

Хвалевыя ўласцівасці не праяўляюцца ў макраскапічных цел. Даўжыні хваль дэ Бройля для такіх цел настолькі малыя, што выяўленне хвалевых уласцівасцей аказваецца немагчымым. Урэшце, назіраць квантавыя эфекты можна і ў макраскапічным маштабе, асабліва яркім прыкладам гэтага служаць звышправоднасць і звышцякучасць.

Фазавая скорасць хваляў дэ Бройля свабоднай часціцы

vf=ωk=Ep=mc2mv=c2vc2hmλ=c2p22Whλ,

дзе ω=2πν — цыклічная частата, W — кінэтычная энергія свабоднай часціцы, E — поўная (рэлятывісцкая) энергія часціцы, p=mv1v2c2 — імпульс часціцы, m, v — яе маса і скорасць адпаведна, λ — даўжыня дэбройлеўскай хвалі. Апошнія суадносіны — нерэлятывісцкай набліжэнне. Залежнасць фазавай скорасці дэбройлеўскіх хваляў ад даўжыні хвалі паказвае на тое, што гэтыя хвалі адчуваюць дысперсію. Фазавая скорасць vf хвалі дэ Бройля хоць і больш за скорасць святла, але адносіцца да ліку велічынь, прынцыпова няздольных пераносіць інфармацыю (з'яўляецца чыста матэматычным аб'ектам).

Гл. таксама

Літаратура

  • Карпускулярна-хвалевы дуалізм // Шаблон:Крыніцы/БелЭн С. 97.
  • Революция в физике (Новая физика и кванты). — 2-е изд. — М: Атомиздат, 1965. — 232 с.

Спасылкі

  1. Революция в физике (Новая физика и кванты). — 2-е изд. — М: Атомиздат, 1965. — 232 с.