Ураўненні Эйнштэйна

З пляцоўкі testwiki
Перайсці да навігацыі Перайсці да пошуку

Шаблон:Фізічная тэорыя Ураўненні Эйнштэйна (часам сустракаецца назва «ураўненні Эйнштэйна-Гільберта»[1]) — ураўненні гравітацыйнага поля ў агульнай тэорыі адноснасці, якія звязваюць паміж сабой метрыку скрыўленай прасторы-часу з уласцівасцямі матэрыі, што запаўняе яе. Тэрмін выкарыстоўваецца і ў адзіночным ліку: «ураўненне Эйнштэйна», бо ў тэнзарным запісе гэта адно ўраўненне, хоць у кампанентах уяўляе сабой сістэму ўраўненняў.

Выглядаюць ураўненні наступным чынам:

RabR2gab+Λgab=8πGc4Tab,

дзе Rabтэнзар Рычы, які атрымліваецца з тэнзара крывізны прасторы-часу Rabcd пры дапамозе згорткі яго па пары індэксаў, Rскалярная крывізна, гэта значыць згорнуты тэнзар Рычы, gabметрычны тэнзар, Λкасмалагічная пастаянная, а Tab уяўляе сабой тэнзар энергіі-імпульсу матэрыі, (π — лік пі, cхуткасць святла ў вакууме, Gгравітацыйная пастаянная Ньютана). Ва ўраўненні ўсе тэнзары сіметрычныя, таму ў чатырохмернай прасторы-часе гэтыя ўраўненні раўнасільныя 4·(4+1)/2=10 скалярным ураўненням.

Адной з істотных уласцівасцей ураўненняў Эйнштэйна з'яўляецца іх нелінейнасць, з-за якой прыводзіць да немагчымасці выкарыстання пры іх рашэнні прынцыпу суперпазіцыі.

Шаблон:Зноскі

  1. Сам Гільберт ніколі не прэтэндаваў на аўтарства гэтых ураўненняў і безумоўна прызнаваў прыярытэт Эйнштэйна. Гл. падрабязнасці ў артыкуле: Альберт Эйнштэйн#Гільберт і ўраўненні гравітацыйнага поля.