Срыніваса Рамануджан
У гэтага чалавека тамільскае імя без прозвішча. Рамануджан — імя, Срыніваса — імя па бацьку, Аенгор — каста. Шаблон:Вучоны Срыніва́са Рамануджа́н Аенго́р (Шаблон:Audio; Шаблон:Lang-ta; Шаблон:Lang-en) (22 снежня 1887 — 26 красавіка 1920) — індыйскі матэматык.
Не маючы спецыяльнай матэматычнай адукацыі, атрымаў выдатныя вынікі ў галіне тэорыі лікаў. Найбольш значная яго праца сумесна з Г. Хардзі па асімптотыцы ліку разбіццяў .
Біяграфія

Рамануджан Срыніваса нарадзіўся 22 снежня 1887 г. на поўдні Індыі. Бацька працаваў бухгалтарам у невялікай тэкстыльнай краме ў горадзе Кумбаканаме Танджорскага раёна Мадраскай правінцыі. Маці была глыбока рэлігійная. Рамануджан выхоўваўся ў строгіх традыцыях замкнёнай касты брахманаў. Ужо ў школе праявіліся яго выдатныя здольнасці да матэматыкі, і знаёмы студэнт з горада Мадраса даў яму кнігі па трыганаметрыі. У 14 гадоў Рамануджан адкрыў формулу Эйлера аб сінусе і косінусе і быў вельмі засмучаны, даведаўшыся, што яна ўжо апублікавана. У 16 гадоў у яго рукі трапіла двухтомнае сачыненне матэматыка Шубрыджа Кара «Зборнік элементарных вынікаў чыстай і прыкладной матэматыкі», напісанае амаль за чвэрць стагоддзя да гэтага (пасля, дзякуючы сувязі з іменем Рамануджана, гэтая кніга была падвергнута грунтоўнаму аналізу). У ім было змешчана 6165 тэарэм і формул, практычна без доказаў і тлумачэнняў. Юнак, які не меў ні доступу ў ВНУ, ні зносін з матэматыкамі, пагрузіўся ў зносіны з гэтым зборам формул. Такім чынам, у яго склаўся пэўны спосаб мыслення, своеасаблівы стыль доказаў. У гэты перыяд і вызначыўся матэматычны лёс Рамануджана.
У 1913 году вядомы прафесар Кембрыджскага ўніверсітэта Г. Хардзі атрымаў дзіўны ліст. Адпраўшчык (а гэта быў Рамануджан) паведамляў, што ён не заканчваў універсітэта, а пасля сярэдняй школы займаецца матэматыкай самастойна. Да пісьма былі прыкладзеныя формулы, аўтар прасіў іх апублікаваць, калі яны цікавыя, бо сам ён бедны і не мае для публікацыі дастатковых сродкаў. Паміж Кембрыджскім прафесарам і індыйскім клеркам завязалася ажыўленая перапіска, у выніку якой у Хардзі назапашваецца каля 120 формул, невядомых навуцы. Па патрабаванні Г. Хардзі ў 27-гадовым узросце Рамануджан пераязджае ў Кембрыдж. Там ён становіцца прафесарам універсітэта, яго выбіраюць у Лонданскае каралеўскае таварыства. Друкаваныя працы з яго формуламі выходзяць адна за адной, выклікаючы здзіўленне, а часам і разгубленасць калег.
У фарміраванні матэматычнага свету Рамануджана пачатковы запас матэматычных фактаў аб’яднаўся з велізарным запасам назіранняў над канкрэтнымі лікамі. Ён калекцыяніраваў такія факты з дзяцінства. Ён валодаў дзіўнай здольнасцю падмячаць велізарны лікавы матэрыял. Па словах Хардзі, «кожны натуральны лік быў асабістым другам Рамануджана». Многія матэматыкі яго часу лічылі Рамануджана проста экзатычнай з’явай, і што ён спазніўся нарадзіцца на 100 гадоў. Не перастаюць здзіўляцца праніклівасці індыйскага генія і матэматыкі нашага часу.
Навуковыя інтарэсы і вынікі
Сфера яго матэматычных інтарэсаў была вельмі шырокая. Гэта магічныя квадраты, квадратура круга, бесканечныя рады, гладкія лікі, разбіцці лікаў, гіпергеаметрычныя функцыі, спецыяльныя сумы і функцыі, якія цяпер носяць яго імя, вызначаныя інтэгралы, эліптычныя і мадулярныя функцыі.
Ён знайшоў некалькі асобных рашэнняў ураўнення Эйлера (гл. Задача аб чатырох кубах), сфармуляваў каля 120 тэарэм (у асноўным у выглядзе выключна складаных тоеснасцей). Сучаснымі матэматыкамі Рамануджан лічыцца найбуйнейшым знаўцам ланцуговых дробаў у свеце. Адным з самых выдатных вынікаў Рамануджана ў гэтай галіне з’яўляецца формула, у адпаведнасці з якой сума простага лікавага рада з ланцуговым дробам у дакладнасці роўная выразу, у якім прысутнічае здабытак на :
Матэматыкам добра вядома формула вылічэння ліку , атрыманая Рамануджанам ў 1910 шляхам раскладання арктангенса ў рад Тэйлара:
Ужо пры Шаблон:Math дасягаецца велізарная дакладнасць — шэсцьсот верных значных лічбаў!
Прыклады бесканечнай сумы, знойдзенай Рамануджанам:
Гэтая незвычайная формула — адна з прапанаваных ім у першым пісьме да Хардзі. Доказ гэтай роўнасці неэлементарны.
Іншыя формулы Рамануджана не менш прыгожыя:
- , дзе
Прызнанне і ацэнкі
Хардзі дасціпна пракаменціраваў вынікі, паведамленыя яму Рамануджанам: «Яны павінны быць праўдзівымі, бо калі б яны не былі праўдзівымі, то ні ў каго не хапіла б ўяўлення, каб вынайсці іх». Яго формулы часам усплываюць у самых сучасных раздзелах навукі, пра якія ў яго час ніхто нават не здагадваўся.
Сам Рамануджан гаварыў, што формулы яму ў сне падказвае багіня Шаблон:Нп2 (Махалакшмі) (Шаблон:Lang-hi), якой пакланяюцца ў Намакале (Шаблон:Lang-ta).
Каб захаваць спадчыну гэтага дзіўнага, ні на каго не падобнага матэматыка, была выдадзена кніга з фотакопіямі яго чарнавікоў.
Паняцці, звязаныя з іменем Рамануджана
Іменем Рамануджана названыя:
- Гіпотэза Рамануджана
- Сумы Рамануджана
- Функцыя Рамануджана
- Канстанта Ландау - Рамануджана
- Лік Рамануджана - Хардзі
- Тоеснасць Роджэрса - Рамануджана
- Тэарэма Хардзі - Рамануджана
- Тоеснасць Дугала - Рамануджана
- Графы Рамануджана
Літаратура
- Шаблон:Кніга
- Шаблон:Кніга
- Шаблон:Артыкул
- Шаблон:Артыкул
- Шаблон:Артыкул
- Шаблон:Кніга (альтернативная ссылка Шаблон:Архівавана)
- Шаблон:Артыкул
- Шаблон:Кніга