Спін

З пляцоўкі testwiki
Перайсці да навігацыі Перайсці да пошуку

Спін (ад Шаблон:Lang-en — круціць, кручэнне) — уласны момант імпульсу элементарных часціц, які мае квантавую прыроду і не звязаны з перамяшчэннем часціцы як цэлага. Спінам называюць таксама ўласны момант імпульсу атамнага ядра ці атама; у гэтым выпадку спін вызначаецца як вектарная сума (вылічаная па правілах складання момантаў у квантавай механіцы) спінаў элементарных часціц, якія ўтвараюць сістэму, і арбітальных момантаў гэтых часціц, абумоўленых іх рухам унутры сістэмы.

Спін вымяраецца ў адзінках Шаблон:Math (прыведзенай пастаяннай Планка, або пастаяннай Дзірака) і роўны J, дзе Шаблон:Math — характэрны для кожнага віду часціц цэлы (у тым ліку нулявы) або паўцэлы дадатны лік — так званы спінавы квантавы лік, які звычайна называюць проста спінам (адзін з квантавых лікаў).

У сувязі з гэтым кажуць аб цэлым або паўцэлым спіне часціцы.

Існаванне спіна ў сістэме ўзаемадзейных тоесных часціц з'яўляецца прычынай новай квантавамеханічнай з'явы, якая не мае аналогіі ў класічнай механіцы: абменнага ўзаемадзеяння.

Уласцівасці спіна

Любая часціца можа валодаць двума відамі вуглавога моманту: арбітальным вуглавым момантам і спінам.

У адрозненне ад арбітальнага вуглавога моманту, які спараджаецца рухам часціцы ў прасторы, спін не звязаны з рухам ў прасторы. Спін — гэта ўнутраная, выключна квантавая характарыстыка, якую нельга растлумачыць у рамках рэлятывісцкай механікі. Калі прадстаўляць часціцу (напрыклад, электрон) як шарык, што верціцца, а спін як момант, звязаны з гэтым кручэннем, то аказваецца, што папярочная скорасць руху абалонкі часціцы павінна быць вышэй за скорасць святла, што недапушчальна з пазіцыі рэлятывізму.

Будучы адной з праяў вуглавога моманту, спін у квантавай механіцы апісваецца вектарным аператарам спіна s^, алгебра кампанента якога цалкам супадае з алгебрай аператараў арбітальнага вуглавога моманту ^.. Аднак, у адрозненне ад арбітальнага вуглавога моманту, аператар спіна не выражаецца праз класічныя зменныя, іншымі словамі, гэта толькі квантавая велічыня. Следствам гэтага з'яўляецца той факт, што спін (і яго праекцыі на якую-небудзь вось) можа прымаць не толькі цэлыя, але і паўцелыя значэнні (у адзінках пастаяннай Дзірака Шаблон:Math).

Прыклады

Ніжэй паказаныя спіны некаторых мікрачасціц.

спін агульная назва часціц прыклады
0 скалярныя часціцы [[Пі-мезон|Шаблон:Math-мезоны]], K-мезоны, хігсаўскі базон, атамы і ядра 4He, цотна-няцотныя ядра, парапазітроній
1/2 спінарныя часціцы электрон, кваркі, мюон, тау-лептон, нейтрына, пратон, нейтрон, атамы і ядра 3He
1 вектарныя часціцы фатон, глюон, W- і Z-базоны, вектарныя мезоны, ортапазітроній
3/2 спін-вектарныя часціцы Ω-гіперон, Δ-рэзанансы, гравіціна
2 тэнзарныя часціцы гравітон, тэнзарныя мезоны

На ліпень 2004 года, максімальны спін сярод вядомых барыёнаў мае барыённы рэзананс Δ(2950) са спінам Шаблон:Дроб. Спін ядраў можа перавышаць 20.

Гісторыя

У 1921 вопыт Штэрна — Герлаха пацвердзіў наяўнасць у атамаў спіна і факт прасторавага квантавання напрамку іх магнітных момантаў.

У 1924 годзе, яшчэ да дакладнай фармулёўкі квантавай механікі, Вольфганг Паўлі ўводзіць новую, двухкампанентную ўнутраную ступень свабоды для апісання валентных электронаў у шчолачных металах. У 1927 годзе ён жа мадыфікуе нядаўна адкрытае ўраўненне Шродзінгера для ўліку спінавай зменнай. Мадыфікаванае такім чынам ураўненне носіць цяпер назву ўраўненне Паўлі. Пры такім апісанні ў электрона з'яўляецца новая спінавая частка хвалевай функцыі, якая апісваецца спінарам — «вектарам» у абстрактнай (гэта значыць не звязаным прама з звычайным) двухмернай спінавай прасторы.

У 1928 годзе Поль Дзірак будуе рэлятывісцкую тэорыю спіна і ўводзіць ужо чатырохкампанентную велічыню — біспінар.

Матэматычна тэорыя спіна аказалася вельмі празрыстай, і ў далейшым па аналогіі з ёй была пабудаваная тэорыя ізаспіна.

Спін і магнітны момант

Нягледзячы на тое, што спін не звязаны з рэальным кручэннем часціцы, ён тым не менш спараджае пэўны магнітны момант, а значыць, прыводзіць да дадатковага (у параўнанні з класічнай электрадынамікай) узаемадзеяння з магнітным полем. Адносіна велічыні магнітнага моманту да велічыні спіна называецца гірамагнітнай адносінай, і, у адрозненне ад арбітальнага вуглавога моманту, яна не роўная магнетону (μ0):

μ^=gμ0s^.

Уведзены тут множнік Шаблон:Math называецца Шаблон:Math-фактарам часціцы; значэнні гэтага Шаблон:Math-фактара для розных элементарных часціц актыўна даследуюцца ў фізіцы элементарных часціц.

Спін і статыстыка

З прычыны таго, што ўсе элементарныя часціцы аднаго і таго ж гатунку тоесныя, хвалевая функцыя сістэмы з некалькіх аднолькавых часціц павінна быць альбо сіметрычнай (гэта значыць не змяняецца), альбо антысіметрычнай (дамнажаецца на -1) адносна перастаноўкі месцамі двух любых часціц. У першым выпадку кажуць, што часціцы падпарадкоўваюцца статыстыцы Бозэ — Эйнштэйна і называюцца базонамі. У другім выпадку часціцы апісваюцца статыстыкай Фермі — Дзірака і называюцца ферміёнамі.

Аказваецца, што іменна значэнне спіна часціцы кажа пра тое, якія будуць гэтыя сіметрыйныя ўласцівасці. Сфармуляваная Вольфгангам Паўлі ў 1940 годзе тэарэма аб сувязі спіна са статыстыкай сцвярджае, што часціцы з цэлым спінам (Шаблон:Math = 0, 1, 2, …) з'яўляюцца базонамі, а часціцы з паўцэлым спінам (Шаблон:Math = Шаблон:Дроб, Шаблон:Дроб, …) — ферміёнамі.

Абагульненне спіна

Увядзенне спіна з'явілася ўдалым прымяненнем новай фізічнай ідэі: пастуляванне таго, што існуе прастора станаў, ніяк не звязаных з перамяшчэннем часціцы ў звычайнай прасторы. Абагульненне гэтай ідэі ў ядзернай фізіцы прывяло да паняцця ізатапічнага спіна, які дзейнічае ў адмысловай ізаспінавай прасторы. У далейшым, пры апісанні моцных узаемадзеянняў былі ўведзеныя ўнутраная каляровая прастора і квантавы лік «колер» — больш складаны аналаг спіна.

Спін класічных сістэм

Паняцце спіна было ўведзена ў квантавай тэорыі. Тым не менш, у рэлятывісцкай механіцы можна вызначыць спін класічнай (не квантавай) сістэмы як уласны момант імпульсу [1]. Класічны спін з'яўляецца 4-вектарам і вызначаецца наступным чынам:

Sν=12εναβγLαβUγ,

дзе

  • Lαβ=(xαpβxβpα) — тэнзар поўнага моманту імпульсу сістэмы (сумаванне праводзіцца па ўсіх часціцах сістэмы);
  • Uα=Pα/M — сумарная 4-скорасць сістэмы, вызначаная пры дапамозе сумарнага 4-імпульсу Pα=pα і масы Шаблон:Math сістэмы;
  • εναβγ — тэнзар Леві-Чывіты.

У сілу антысіметрыі тэнзар Леві-Чывіты, 4-вектар спіна заўсёды артаганальны да 4-скорасці Uα.. У сістэме адліку, у якой сумарны імпульс сістэмы роўны нулю, прасторавыя кампаненты спіна супадаюць з вектарам моманту імпульсу, а часовая кампанента роўная нулю.

Іменна таму спін называюць уласным момантам імпульсу.

У квантавай тэорыі поля гэта вызначэнне спіна захоўваецца. У якасці моманту імпульсу і сумарнага імпульсу выступаюць інтэгралы руху адпаведнага поля. У выніку працэдуры другаснага квантавання 4-вектар спіна становіцца аператарам з дыскрэтнымі ўласнымі значэннямі.

Гл. таксама

Шаблон:Зноскі

Літаратура

Спасылкі